Intersystem crossing-branched excited-state intramolecular proton transfer for o-nitrophenol: An ab initio on-the-fly nonadiabatic molecular dynamic simulation

نویسندگان

  • Chao Xu
  • Le Yu
  • Chaoyuan Zhu
  • Jianguo Yu
  • Zexing Cao
چکیده

The 6SA-CASSCF(10, 10)/6-31G (d, p) quantum chemistry method has been applied to perform on-the-fly trajectory surface hopping simulation with global switching algorithm and to explore excited-state intramolecular proton transfer reactions for the o-nitrophenol molecule within low-lying electronic singlet states (S0 and S1) and triplet states (T1 and T2). The decisive photoisomerization mechanisms of o-nitrophenol upon S1 excitation are found by three intersystem crossings and one conical intersection between two triplet states, in which T1 state plays an essential role. The present simulation shows branch ratios and timescales of three key processes via T1 state, non-hydrogen transfer with ratio 48% and timescale 300 fs, the tunneling hydrogen transfer with ratios 36% and timescale 10 ps, and the direct hydrogen transfer with ratios 13% and timescale 40 fs. The present simulated timescales might be close to low limit of the recent experiment results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Trajectory-based nonadiabatic molecular dynamics without calculating nonadiabatic coupling in the avoided crossing case: trans↔cis photoisomerization in azobenzene.

We develop a novel method to simulate analytical nonadiabatic switching probability based on effective coupling and effective collision energy by using only electronic adiabatic potential energy surfaces and its gradients in the case of avoided crossing types of nonadiabatic transitions. In addition, the present method can keep the same time step for computing both on-the-fly trajectory and non...

متن کامل

Excited-state deactivation in 8-oxo-deoxyguanosine: comparison between anionic and neutral forms.

8-Oxoguanine is the most abundant oxidation product found in oxidatively damaged DNA. The study of the excited-state properties of the corresponding deoxyribonucleoside 8-oxo-deoxyguanosine is thus of important biological relevance. Herein, we present an ADC(2)-s ab initio study of the neutral and the anionic form of 8-oxo-deoxyguanosine, for each of which we have considered the intramolecularl...

متن کامل

Comparison of structural dynamics and coherence of d–d and MLCT light-induced spin state trapping† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c6sc05624e Click here for additional data file.

Light-induced excited spin state trapping (LIESST) in Fe spin-crossover systems is a process that involves the switching of molecules from low (LS, S 1⁄4 0) to high spin (HS, S 1⁄4 2) states. The direct LS-to-HS conversion is forbidden by selection rules, and LIESST involves intermediate states such as MLCT or T. The intersystem crossing sequence results in an HS state, structurally trapped by ...

متن کامل

Quantum Dynamics of the Excited-State Intramolecular Proton Transfer in 2-(2¢-Hydroxyphenyl)benzothiazole

The excited-state intramolecular proton-transfer dynamics and photoabsorption associated with the ketoenolic tautomerization reaction in 2-(2¢-hydr oxyphenyl)benzothiazole are simulated according to a numerically exact quantumdynamics propagation method and a full-dimensional excited-state potential energy surface based on an ab initio reaction surface Hamiltonian. The simulations involve the p...

متن کامل

Semiclassical molecular dynamics simulations of intramolecular proton transfer in photoexcited 2-„28-hydroxyphenyl...–oxazole

A full-dimensional excited state potential energy surface is constructed, and the proton transfer dynamics associated with the keto-enolic tautomerization reaction in photoexcited 2-~28-hydroxyphenyl!–oxazole is simulated according to an approximate version of the semiclassical initial value representation method introduced by Miller and co-workers @V. Guallar, V. S. Batista, and W. H. Miller, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016